Arbeitsblatt 10 Thema: Zufallsgröße, Erwartungswert Aufgabe 10 Hier können Sie mit einem Glücksrad spielen! Der Einsatz beträgt nur 2 € ! gelb: Der Einsatz ist leider verloren blau: Sie erhalten den vollen Einsatz zurück rot: Sie gewinnen 3 € grün: Sie gewinnen 4 € magenta: Sie gewinnen 5 € ! Das werbewirksame Anpreisen von Gewinnen ist natürlich nicht ganz korrekt: Bei magenta beträgt zwar die Auszahlung 5 €, aber der Gewinn beträgt nur 3 €, denn Sie haben ja vorher 2 € als Einsatz bezahlt. Die Zufallsgröße X soll die Auszahlung beschreiben. Somit kann X die Werte 0 €, 2 €, 3 €, 4 € und 5 € annehmen. Vervollständigen Sie die Tabelle und berechnen Sie den Erwartungswert für die Auszahlung: k P(X = k) k · P(X = k) 0 € 9⁄24 = 0 0 € · 9⁄24 = 0,00 € 2 € 6⁄24 = 0,25 2 € · 6⁄24 = 0,50 € 3 € 4⁄24 ≈ 0,167 4 € 5 € Summen: Beurteilen Sie, ob das Glücksspiel fair ist. Der Erwartungswert für die Auszahlung beträgt ... A: E(X) ≈ 1,92 € B: E(X) ≈ −0,08 € C: E(X) ≈ 2,08 € D: E(X) ≈ −0,67 € Und hier gibt es Lösungshinweise ◄◄ ◄ zurück Aufg.10 weiter ► ►► Chat-Forum